Facebook
来源知乎:远东轶事 我们最近改进了ELF框架,并且在上面实现了DeepMind的AlphaGoZero及AlphaZero的算法。用两千块GPU训练约两到三周后得到的围棋AI,基本上超过了强职业的水平。我们和韩国棋院合作进行了一次测试,给这个AI单卡每步50秒搜索时间(每步搜索8万个局面),给人类棋手任意长时间思考,结果AI以14比0完胜。参与测试的棋手包括金志锡,申真谞,朴永训及崔哲瀚,在这里我们非常感谢他们的合作,大家都很尽力,一些棋局下了三四个小时极其精彩。应棋手们的要求,这14局棋谱中的12局不久将公开。 另外我们也和现在著名的LeelaZero比较了下。我们采用了LeelaZero除ponder外的缺省配置(约一分钟一步),及4月25日的公开权重(192x15, 158603eb),结果我们的AI以200比0获胜。在此我们非常感谢Leela团队的工作,对于他们的开源精神,我们表示由衷的敬意。 这次我们将训练代码,测试代码及训练出来的模型(224x20)全部公开,首要目的是贯彻我们一直以来坚持的开源方针,让AI为全世界服务。其次是对于AlphaGoZero及AlphaZero这样非常优秀的算法,我们想要提供一个可重复的参考实现,让全球的研究者们能在这上面继续改进,充分发挥自己的创造力。最后是借此机会推广一下我们的ELF平台和PyTorch深度学习框架,希望更多的人能使用和完善它。 代码见:https://github.com/pytorch/ELF 模型见:pytorch/ELF 英文blog见:https://research.fb.com/facebook-open-sources-elf-opengo/ 感谢大家的支持! 田渊栋,龚渠成&马子嫯(Jerry Ma), Shubho Sengupta, 陈卓远,Larry Zitnick
|